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ABSTRACT 

Excess partial molar enthalpies of binary liquid mixtures can be accurately measured at 
very low concentrations by means of continuous-injection heat conduction calorimetry. This 
method causes evolution of the thermal properties of the calorimeter as a function of time. In 
this paper it is shown that identification and deconvolution of the thermal signal are 

equivalent problems when dealing with time-varying systems. A signal treatment analysis is 
proposed based upon optimal tracking, and different numerical examples, where the actual 
calorimeter is replaced by a discrete RC model, are presented. 

INTRODUCTION 

In recent years, continuous-injection heat conduction calorimetry has 
been extensively used for the determination of excess partial molar enthal- 
pies in binary liquid mixtures. The most outstanding advantage of this 
technique is that the whole range of concentrations can be scanned in a 
single run. Numerical treatment of the thermograms, i.e., identification and 
deconvolution to eliminate the thermal inertia of the calorimeter, leads to 
highly accurate values for the excess molar partial enthalpies at concentra- 
tions as low as x G 0.001. Phenomena like phase separation and micellation 
can also be studied with this experimental technique [1,2]. 

In all the preceding cases there is a flow of liquid solute from outside, at 
the temperature of the thermal bath, into the calorimetric vessel, at the 

0040-6031/86/$03.50 0 1986 Elsevier Science Publishers B.V. 



204 

temperature of the reaction. This flow modifies the thermal properties of the 
calorimeter in three ways: the heat capacity of the calorimetric vessel 
increases with time, there is an energy contribution devoted to warming up 
the liquid entering the vessel, and, finally, the thermal couplings between the 
vessel and the detectors may also change [3]. These modifications cannot a 
priori be neglected when numerically processing the thermograms, and there 
is, in fact, experimental evidence for them: changes in the steady-state 
temperature for a constant power dissipation, and evolution of the dynamic 
properties of the calorimetric response with the amount of mixture in the 
vessel. 

From the same measurements, however, it is clear that the relative 
influence of the changes associated with the injection is only significant for 
noise-free experiments. In these experiments, deconvolution of the thermal 
response will have to be performed explicitly taking into account the 
time-varying character of the calorimetric dynamic properties during injec- 
tion. 

Methods proposed so far are generalizations of the corresponding time-in- 
variant ones. Firstly, the multi-body method is easily extended to the 
time-varying situation by explicitly considering the time behaviour of the 
heat capacities and couplings in the model. Secondly, inverse filtering of the 
thermogram can handle time-varying calorimetric experiments by consider- 
ing the sensibility and the time constants of the device as functions of time. 
The dependence can be obtained from static measurements with different 
contents of the vessel, as detailed in refs. 4-6. 

In this paper we present a generalization of the optimal control method, 
described in ref. 7, to the time-varying experimental problem. The thermal 
behaviour of the calorimeter is expressed in terms of state variables, and 
identification and deconvolution are formulated as tracking problems in 
signal analysis. The generalized method is applied to several simple and 
realistic examples to test its performance. The examples are computed with 
the aid of an RC model consisting of three thermal capacities, which roughly 
represents an actual continuous-injection calorimeter. 

METHODS FOR DECONVOLUTION AND IDENTIFICATION 

Deconvolution and the optimal tracking problem 

Let u(t) be an unknown input signal which provides an output signal 
_Y( t) as represented in Fig. 1. When the system behaves linearly, the restora- 
tion of u from the knowledge of y is referred to as deconvolution. 

The basic idea of the method proposed is as follows: for the lack of 
knowledge about the input signal, u, a signal fi which gives an output signal 
J near to y is considered as a good approximation of u. Two signals, u” and 
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Fig. 1. Schematic diagram of the input-output calorimetric system. 

G, which provide the same output cannot be distinguished. Therefore, the 
deconvolution may be considered as the synthesis of a signal ic which 
minimizes a function of the error e(t) defined below. Different techniques 
have been proposed to solve this problem [7,8]. The situation is schematically 
represented in Fig. 2. 

Obviously, a model of the system is required, but modelling, in fact, 
already comprises a deconvolution. In the time-invariant case some tech- 
niques are able to perform the identification without effective deconvolution 
[7]. Here, another use of the optimal control theory is proposed in order to 
identify a time-varying model. 

Identification and optimal control 

In order to illustrate our method, we use a one-dimensional system 
described by its state equation 

i=f(t)x(t)+u(t) 

This can be considered to be equivalent to a first-order linear system with a 
varying time constant. u(t) is the input signal, x(t) the output signal and 
f(t) a time-varying gain. The block diagram corresponding to the state 
equation is shown in Fig. 3. 

The preceding equation may, however, be considered from another point 
of view. It can represent the state equation of a system with two different 
inputs, u and f, as represented in Fig. 4. Therefore, it is clear that f(t) and 
u(t) have an equivalent meaning and, henceforth, identification and decon- 
volution become the same thing. In particular, we may consider that f(t) is 

an input signal and u(t) is internal and known. 
Suppose now that we want to identify this system. We look for a model 

described by 

kll =f,(tbln + u(t) 

Fig. 2. Block diagram for the tracking problem. 
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Fig. 3. Block diagram corresponding to a time-varying one-dimensional system described by 
the state equation i = f( r)x( t)+ u( 1). 

Fig. 4. Block diagram representing the state equation of a time-invariant system which has 

two different inputs: u(t) and f( t ). 

which must provide an output signal, x,,,, as close as possible to the actual 
output, x(t), for the same input, u(t). We then face the tracking problem 
schematically represented in Fig. 5, namely, to find an optimal control, fz, 
such that the corresponding output, xz, minimizes a performance criterion 

J(f,) =l%e, 4 dt 

This problem can be solved by using an iterative procedure [8]. 

An example 

The method described above can be illustrated using simple examples. 

.-.-.-. 

Fig. 5. Block diagram of the optimal control problem encountered in the identification of a 

time-varying linear system. 
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Fig. 6. Evolution of f(t) with time for an initial guess at the origin given by f( I = 0) = - 1.5. 
Curves (a), (b), (c) and (d) correspond to the results of identification obtained after 20, 32, 
132 and 173 iterations, respectively. The exact result in this case is f(r) = - t represented by 
the line (.-.-.). 

Figure 6 shows the results of identification for a system modelled by 

;= -LX+1 

for which, correspondingly, f(t) = - t. Although the imposed initial value 
f( t = 0) = - 1.5 is very different from the actual one, f( t = 0) = 0, after 
loo-150 iterations the identification method gives the true behaviour of 

f(t)* 

EXAMPLES CORRESPONDING TO BINARY LIQUID MIXTURES 

A discrete model consisting of three heat capacities, equivalent to that in 
Fig. 1 of ref. 4, has been used to obtain simulated thermograms correspond- 
ing to well-known input thermal power functions. The model roughly 
simulates a continuous-injection heat conduction calorimeter in which, due 
to the mixing and stirring, the heat is supposed to be released into the bulk 
of the vessel, of global heat capacity C,(t). The variation of C, with time has 
been assumed to be linear, since it is due to the injection of liquid solute at a 
constant rate, and the parameters used to carry out the simulations are 

C,(t = 0) = 40; C, = 20; C, = 20 (J K-‘) 

PI2 = 0.35; Pz3 = 1.25; P3 = 0.79; C, = 9.60912 X 1O-4 (W K-‘) 

The model at t = 0 is exactly the same as that proposed in ref. 4 and the 
variation of C, is 10% in 1 h. The time constants of the model at t = 0 
(invariant system) have the values 7, = 225.3 s, T* = 31.8 s and 73 = 6.5 s. 
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The first simulation takes, as the heat power dissipation, that of an 
injection of cyclohexane into the vessel initially containing 16.18 cm3 of 
benzene during a total of 3600 s. The power released (in the first element of 

the model) is given by 

W(t) = h,EG, 0 < t < 3600 s 

- -+ 
0 2000 t/s 

0 2000 t/s 

Fig. 7. (A) Heat power dissipation simulating an injection of cyclohexane into 16.18 cm3 of 
benzene at a constant rate. (B) The corresponding calculated thermogram. (C) Deconvolution 
result achieved by means of an optimal tracking approach after 120 iterations, using 430 
points of the thermogram sampled every 10 s. 
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with 

& = 7.11787 X 10m6 mol s-l 

and 

h,E = x:( A, + /4,x1 +A& + A&) 

where x1 stands for the molar fraction of cyclohexane in the mixture, x2 for 

(a) 

(b) 

0 2000 t/s 

Fig. 8. (A) Heat power dissipation simulating a phase separation process for t > 1800 s. (B) 
The corresponding calculated thermogram. (C) Deconvolution result by means of an optimal 
tracking approach after 120 iterations, using 430 points of the thermogram sampled every 10 
S. 
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that of benzene and the coefficients Ai have the following values 

Acl = 3518.1; A, = -2082,2; A, = 2866.8; A, = - 1253.6 

The resulting dissipation is shown in Fig. 7A together with the output 
thermogram obtained from the model (Fig. 7B) and the restoration of the 
input power (or thermogenesis) obtained by means of the optimal tracking 
approach (Fig. 7C), 

The same kind of power dissipation has been simulated in Fig. 8A, with 
its magnitude being abruptly reduced by a factor of four at t = 1800 s, i.e. 

W(t) = q-&/4 if 1800<t<3600s 

a 

b 

W 

240 
‘a 

230; 
/ 

1 

220 I 

b 

d sdo tis 

Fig. 9. Identification by the optimal control method. (A) A Heaviside-like input power (curve 
b) is simulated to be released in the vessel, giving rise to the thermogram shown as curve (a). 
(B) Evolution of I, with time after 60 iterations using 100 points sampled each 10 s. Results 
for three different preliminary choices of 7,(t) (t = 1000 s) are shown: (a) 245 s; (b) 230 s, 
which is the value given by the model; and (c) 215 s. 
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This is done in order to simulate a process of phase separation, sometimes 
encountered in liquid mixtures, and to test the stability of the deconvolution 
method against discontinuities in the input function. The corresponding 
thermogram is shown in Fig. 8B, while the result of applying the optimal 
tracking approach is presented in Fig. SC. 

The identification method based on optimal control, described before, has 
been tested in two different cases. Firstly, it has been applied on the thermal 
response corresponding to Heaviside-like input which reproduces typical 
Joule-effect calibration experiments. Both curves are shown in Fig. 9A, while 
Fig. 9B presents the variation of rr(f) with time after 60 iterations of the 

(b) 

240 

“O&- b 

\ 
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\ 
\ 

220 
‘$1, f 

0 500 t/s 

Fig. 10. Identification by the optimal control method. (A) The thermogram (initial part of 
Fig. 7B). (B) Evolution of 7, with time after 400 iterations using 100 points sampled each 10 
s. Three different results are shown corresponding to the following preliminary choices for the 
value of 7,(t) (t =lOOO s): (a) 235 s; (b) 230 s, actual value; and (c) 235 s. 
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method for three different initial guesses. The other two parameters, r2 and 
rl, are assumed to be constant and have the values given in the model at 
t = 0. A total of 100 points, sampled each 10 s, have been used. The figure 
shows that, independently of the initial choice of TV, the actual linear 
dependence of T~( t) appears at times t < 500 s which in turn can be 
extrapolated to the whole time domain. 

Secondly, the identification method has been tested on the injection 
measurement described above (Figs. 7A and B). As before, 100 points, 
sampled each 10 s, have been used to carry out the calculations. Figure 10A 
shows the corresponding part of the thermogram. Again r2 and r3 were 
taken as constants, while for pi three different initial values were tested. 
Figure 10B presents the corresponding behaviour of T1(t) after 400 itera- 
tions. For t < 500 s the three curves converge to the actual behaviour of rl( t) 
in the model. If the injection experiment was considered to be performed 
with a standard binary mixture, the figure shows that the optimal control 
method is able to identify the true variation of the calorimetric parameters 
during injection. 

CONCLUSIONS 

The optimal control method for signal treatment can be satisfactorily 
applied to identification and deconvolution problems in time-varying micro- 
calorimetry. 

The algorithms have been tested on different kinds of thermograms which 
have been numerically simulated with a non-stationary heat-transfer model. 
The model is like a continuous-injection heat conduction calorimeter. 

The results presented show that a good convergence to the actual time- 
varying parameters of the model is achieved in spite of the uncertainty with 
which these parameters are known a priori. On the other hand, the resulting 
time-varying description of the system may be properly used to carry out a 
deconvolution yielding the actual thermal power dissipated in the system 
with satisfactory accuracy. 
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